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Abstract: A numerical technique to compute the time domain
response of multiconductor lossy uniform and nonuniform
lines terminated in general nonlinear elements is presented.
The technique is based on the generalized method of
characteristics and is used to study signal delay, distortion and
crosstalk in interconnections in integrated circuits and chip
carriers.

Introduction

A number of techniques have been formulated in recent years
to compute the time domain response of multiconductor
uniform and nonuniform lines [1-7]. The work reported on
lossy lines, however, has been limited to the special cases of
homogeneous medium [4], analysis based on frequency
domain solutions [5], or other special cases (e.g., [6]) where
coupling between non-adjacent lines is neglected. The method
of characteristics, which has been applied to lossless and
lossy distortionless lines [7], transforms the initial pair of
equations into a pair of ordinary differential equations. Each
of these two ordinary differential equations holds true along a
family of characteristic curves, often abbreviated to
characteristics. For the lossless and lossy distortionless line
these ordinary differential equations can be integrated directly
[7]. For the lossy line the equations can be solved
numerically. In the paper the method is expanded and applied
to study time domain response of single and multiple coupled
lossy uniform and nonuniform lines including
interconnections in integrated circuits and chip carriers

(Fig. 1).

Theory

The voltages and currents on a nonuniform
multiconductor transmission line are given by

g—; + L(x)g-ti- + Rx)i=0, {1
gj? + C(x)%?- + Gx)ye=0, )
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together with the boundary conditions at x =0 and x=4d.
Here, e = e(x,t) and i = i(x,t) are n-dimensional voltage and
current vectors, respectively, and R(x), L(x), G(x), C(x) are
real, symmetric n X n matrices.

Let the terminations, or boundary conditions, be given by

i(0, 1) = f(v,(»), €0, 0, O, 3)
id, t) = g(v,(0), e(d, 1), 1), @

where vg(t) and v (t) are the vectors of generator voltages at

the input (x = 0) and output (x = d) ends of the line and f and
g are well behaved vector functions (f and g can be extended
to describe arbitrary terminations).

In order to find the solution of the system of equations
(1)~(2), it is first transformed into a system having diagonal L
and C matrices. This can be done as follows:

Let eg and iy be transformed voltage and current vectors

related to e and i by
e=E®X) e, i=H®X) i, (5)

where E(x) and H(x) are n X n matrices.
Substituting (5) into (1)-(2) gives

a i
S LS+ Ryip + E1SEe =0, ©
i 2
%T-+CT—5°}+ Grep+ H1G ip =0, (1)
where

Ly = Ly = E) Lx) HOo, ®
Ry =R(x) = E(x) R(x) H(x), ®
Cp = Cy(x) = H'(x) C() E(X), (10)
Gy = Gp(x) = H'(x) G E®). an

The matrices E(x) and H(x) can be determined from the
requirement that L.(x) and C.(x) have to be diagonal. Using

(8) and (10):

LO)E=E (L Cp, (12)
(CL)H =H (C{Ly). (13)
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It is seen from (6) and (7) that E and H are the eigenvector
matrices of LC and CL matrices, respectively. Since L and
C are symmetrical matrices, transposing (13) shows that H is
related to Eby H= (ET)'I, where ET denotes the transpose of
E.
The boundary conditions given by equations (3) and (4)
transform to
ip(0, 0) = H1(0) f(vg(t), E(@©0) ep(0, 1), t),
ir(d, ) = H'Y(d) gv ), E@) ep(d, 1), t).

(14)
(15)

The Generalized Method of Characteristics

The system of partial differential equations (6) and (7) is
reduced to a system of ordinary differential equations which
are valid along a family of curves in the (x,t) plane. This
system of ordinary differential equations is then solved
numerically.

If X = xX1(1), X = X3(1), ... , x =Xp(t) (16)

are the equations of n curves in the (x,t) plane, then dx;/dt (k
=1, 2, ..., n) are the slopes of the tangents to these curves
and

d Ji i
deg= dxa?ir—+dt-§, dig = dx £+dt%lz, %)

where ery, ity (k =1, 2, ..., n) are the elements of er, iy and
dx=diag(dxy, ... , d%,). By substituting equation (17) into (6)
and (7) it can be shown that there are two choices of curves
(16) that will transform them into ordinary differential
equations. The two choices are given by

dx+

T =t L) Creor™, (18)

dx; dx, dx,
T @ d
of characteristic curves the system (6) and (7) can be reduced
leading to the system of equations given by

where %XE-= diag ( ). Along these families

Idt — (CiLp)?dx =0, (19)
dey + Zq dip + dx[ZO(GT er+H1E; ) 4
+Ryip+E? %eT] =0, 0
Idt +(CpLp)? dx =0, 1)
dey — Z, diy + dx ["ZO(GT ep+H?! T-ip) +
+Ryip +E! %eT] =0, (22)

where 1 is the identity matrix.
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Numerical Solution

The above system of equations can be solved numerically by
approximating the differentials by finite differences. The
resulting system of equations is solved for the voltage and
current vectors at successive time points. The procedure is
outlined below (Fig. 2).

I Choose the number of points where the voltages are to be

calculated (m+1). This specifies Ax in Fig. 2 as Ax = d/m.
II Choose At as

At=min  [Ax Y L1Px) C{Px) 1.
ie {1..n}

over all x

@23)

IIT At points along the line
1. x(R;) and x(8;) are calculated from the finite difference
approximations of (19) and (21).

2. ep(Ry), i(Ry), ex(Sy), ip(S;) are calculated from known
e and iy at points C, D, E at time t using linear interpolation.

3. ep(P) and ip(P) are obtained from the finite difference
approximation of equations (20) and (22).

4. e(P) and i(P) can then be obtained from

¢(P) =E(D) er(P), i(P) =H(D) ir(P). @9

IV At x=0
1. x(U;) is calculated from the finite difference
approximation of (21).

2. Calculate e(U)), ip(U;) from e (A), ep(B), it(A) and
i7(B) using linear interpolation.

3. Solve the finite difference approximation of (20) together
with (14) for e4(U;) and i(U;). This can be done by some
iterative method.

4. Transform back to get e(M), i(M):

eM) =E(A) er(M), i(M) =H(A) ip(M). @25)
v Igt x = d the calculations proceed in a similar manner as for
X=uU.

Steps III-V are then repeated for each time point.

Results and Concluding Remarks

The step response of typical uniform and nonuniform
structures have been computed by utilizing the technique
outlined above. For lossless uniformly coupled lines the step
response is found to be in agreement with those reported in
[1] and [2]. All the calculations were performed on a desktop
computer. The capacitance, inductance, resistance and
conductance matrices can be computed by utilizing various
available numerical techniques such as those based on finite
difference, boundary element and spectral domain methods
[1,9,10]. The diagonal resistance matrix elements in these
examples arc taken as constant corresponding to the low
frequency quasi-static solution.

Figure 3 shows the step response of an asymmetric
nonuniformly coupled microstrip structure. The circuit was



analyzed by using the above procedure with 100 divisions per

line.

The computed step response of a uniformly coupled

three line structure with nonlinear terminations is shown in

Fig.

4, together with the structure geometry and the

schematic. The diode is defined by i= Is(e"/V T — 1), where

I=1
100

nA and V.. =25 mV. The circuit was analyzed by using
divisions per line. In order to demonstrate that the

properties of nonuniformly coupled interconnections, such as
those encountered in certain chip carriers, can be computed by
using the technique, Fig. 5 shows the step response of a
symmetric nonuniform coupled three line structure. The near

and

far end crosstalk has a behavior similar to that of

uniformly coupled lines [1, 2].

In conclusion, a numerical technique based on the

generalized method of characteristics has been developed to
compute the time domain response of general lossy
multiconductor coupled uniform and nonuniform lines. The
technique should be helpful in the analysis and design of
interconnections in high speed digital and analog hybrid and
monolithic circuits, chip carriers and packages.
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Figure 2: Computation of voltages and currents on the line
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Figure 3(a): Crossectional view and schematic of asymmetric

coupled nonuniform lines
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Figure 3(b) : Step response of the coupled line four port
of Fig. 3(a).
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Figure 4(a): Crossectional view and schematic of symmetrical
uniformly coupled microstrip line six port
terminated in nonlinear element.
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Figure 4(b): Step response of the three line uniform structure.
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Figure 5(a): Schematic of three nonuniformly coupled
microstrips.
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Figure 5(b): Step response of the nonuniform three-line structure.



