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Abstracc A numerical technique to compute the time domain

response of multiconductor Iossy uniform and nonuniform
lines terminated in general nonlinem elements is presented.
The technique is based on the generalized method of
characteristics and is used to study signal delay, distortion and
crosstalk in interconnections in integrated circuits and chip
carriers.

Introduction

A number of techniques have been formulated in recent years
to compute the time domain response of multiconductor
uniform and nonuniform lines [ 1–7]. The work reported on
lossy lines, however, has been limited to the special cases of
homogeneous medium [4], analysis based on frequency
domain solutions [5], or other special cases (e.g., [6]) where
coupling between non-adjacent lines is neglected. The method
of characteristics, which has been applied to lossless and
lossy distordonless lines [7], transforms the initial pair of
equations into a pair of ordinary differential equations. Each
of these two ordinary differential equations holds true along a
family of characteristic curves, often abbreviated to
characteristics. For the lossless and 10SSYdistortionless line
these ordinary differential equations can be integrated dwectly
[71. For the 10SSV line the eauations can be solved
;u”merically. In the japer the mekd is expanded and applied
to study time domain response of single and multble couded
lossy - uniform and” nonuniform
interconnections in integrated circuits
(Fig. 1).
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The voltages and currents on a nonuniform
multiconductor transmission line are given by

.

E
+ L,(x)% + R(x) i = O, (1)

ai + C(X) ~ + G(x) e = %
x

(2)
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together with the boundary conditions at x = O and x = d.
Here, e = e(x,t) and i = i(x,t) are n-dimensional voltage and

current vectors, respectively, and R(x), L(x), G(x), C(x) are

real, symmetric n x n matrices.

Let the terminations, or boundary conditions, be given by

i@, t) = f(v.$t), e(O, t), t)> (3)

i(d, t) = g(v$(t), e(d, t), t), (4)

where vg(t) and v~(t) are the vectors of generator voltages at

the input (x= O) and output (x = d) ends of the line and f and
g are well behaved vector functions (f and g can be extended
to describe arbitrary terminations).

In order to find the solution of the system of equations
(l)--(2), it is fiist transformed into a system having diagonal L
and C! matrices. This can be done as follows:
Let e~ and i~ be transformed voltage and current vectors

relatd- to e a-d i by

e= E(x)q, i= H(x)iT,

where E(x) and H(x) are n x n matrices.

Substituting (5) into (1 j(2) gives

a% aiT 1(IE
~+%~+%iT+E- ~eT ‘0’

aiT aq

~+ cT~

.1 dH .
+GTeT+H ~lT =0,

where

LT = LT(x) = E-l(x) L(x) H(x),

RT = RT(x) = E-l(x) R(x) H(x),

CT= CT(X) = H-l(x) C(X) E(x),

GT = GT(x) = H-l(x) G(x) E(x).

(5)

(6)

(7)

(8)

(9)

(lo)

(11)

The matrices E(x) and H(x) can be determined from the
requirement that ~(x) and CT(X) have to be diagon~. Using

(8) and (10):

(LC) E = E (qCT), (12)

(CL) H = H (CTLT). (13)

1990 IEEE MTT-S Digest



It is seen from (6) and (7) that E and H are the eigenvector

matrices of LC and CL matrices, respectively. Since L and

C are symmeticaJ matrices, transposing (13) shows that H is

related to E by H = (ET)-l, where ET denotes the transpose of

E.

The boundary conditions given by equations (3) and (4)
transform to

iT(O, t) = H-l(0) f(v$t)> E(0) e.@, t), t), (14)

i~(d, t) = H-l(d) g(v,(t), E(d) ~(d, t), t). (15)

The Generalized Method of Characteristics

The system of partial differential equations (6) and (7) is
reduced to a system of ordinary differential equations which
are valid along a family of curves in the (x,t) plane. This
system of ordinary differential equations is then solved
numerically.

If x = xl(t), x = x~(t), ... . x = Xn(t) (16)

are the equations of n curves in the (x,t) plane, then dxkldt (k

= 1, 2, .... n) are the slopes of the tangents to these curves
and

where ~k, iTk (k= 1, 2, .... n) are the elements of eT, iT and

dx=diag(dxl, ... . ~). By substituting equation (17) into (6)

and (7) it can be shown that there are two choices of curves
(16) that will transform them into ordinary differential
equations. The two choices are given by

(18)
-1/2

~=* [LT(x) CT(X)] ,

where $= diag ( ~, ‘~, ... .
dxn
~). Along these families

of characteristic curves the system (6) and (7) can be reduced
leading to the system of equations given by

I dt - (CTLT)l’2 dx = O,

[
de~+Z~diT+dx ZO(GT eT + H-l ‘~iT ) +

~ dE 1+RTiT+E - ~eT =0>

I dt + (CTL~)l’2 CIX= O,

[
de~–z~d$.+dx –Z&Te. t.+H-l ‘~i~ ) +

~ dE 1+R~iT+E - -&eT =0,

where I is the identity matrix.

(19)

(20)

(21)

(22)

Numerical Solution

The above system of equations can be solved numerically by
approximating the differentials by finite differences. The
resulting system of equations is solved for the voltage and
current vectors at successive time points. The procedure is
outlined below (Fig. 2).

I Choose the number of points where the voltages are to be

calculated (m+l). This specifies Ax in Fig. 2 as Ax = d/m.

II Choose At as

At= min [Ax ~ LT6)(x) CTfi)(X) ]. (23)
ie {1...n)

over all x

Bl At points along the line

1. x(Ri) and x(Si) are calculated from the finite difference

approximations of (19) and (21).

2. e&i), iT(Ri), eT(Si), ‘T(Si) are calculated from known

~ and iT at points C, D, E at time t using linear interpolation.

3. eT(p) and iT(p) are obtained from the finite difference

approximation of equations (20) and (22).

4. e(P) and i(P) can then be obtained from

e(P) = E(D) %(P) , i(P) = H(D) iT(P). (24)

IV Atx=O

1. x (U i) is calculated from the finite difference

approximation of (21).

2. Calculate eT(Ui), iT(Ui) from eT(A), eT(B), iT(A) ~d

iT(B) using linear interpolation.

3. Solve the finite difference approximation of (20) together
with (14) for eT(Ui) and iT(Ui). This can be done by some

iterative methcd.

4. Transform back to get e(M), @I):

e(M) = E(A) eT(M) , i(M) = H(A) iT(M). (25)

V At x = d the calculations proceed in a similar manner as for
x=().

Steps III-V are then repeated for each time point.

Results and Concludinsz Remarks

The step response of typical uniform and nonuniform
structures have been computed by utilizing the technique
outlined above. For lossless uniformly coupled lines the step
response is found to be in agreement with those reported in
[1] and [2]. All the calculations were performed on a desktop
computer. The capacitance, inductance, resistance and
conductance matrices can be computed by utilizing various
available numerical techniques such as those based on finite
difference, boundary element and spectrrd domain methods
[1,9, 10]. The diagonal resistance matrix elements in these
examples are takim as constant corresponding to the low
frequency quasi-static solution.
Figure 3 shows the step response of an asymmetric
nonuniformly coupled micro strip structure. The circuit was
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analyzed by using the above procedure with 100 divisions per
line. The computed step response of a uniformly coupled
three line structure with nonlinear terminations is shown in
Fig. 4, together with the structure geometry and the

schematic. The diode is defiied by i = Is(evwT – 1), where

Is= 1 nA and VT = 2,5 mV. The circuit was analyzed by using

100 divisions per Iine. In order to demonstrate that the
properties of nonuniformly coupled interconnections, such as
those encountered in certain chip carriers, can be computed by
using the technique, Fig. 5 shows the step response of a
symmetric nonuniform coupled three line structure. The near
and far end crosstalk has a behavior similar to that of
uniformly coupled lines [1, 2].

In conclusion, a numerical technique based on the
generalized method of characteristics has been developed to
compute the time domain response of general lossy
multiconductor coupled uniform and nonuniform lines. The
technique should be helpful in the analysis and design of
interconnections in high speed digitaJ and analog hybrid and
monolithic circuits, chip carriers and packages.
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FQure 3(a): Crossectionaf view and schematic of asymmetric

coupled nonuniform lines
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F@ure 3(b) : Step response of the coupled line four port

of Fig. 3(a).
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Figure 5(a): Schematic of three nonuniformly coupled
microstrips.

v(6)

Tenrdnal voltages
p701ts]

f

l/- V(2)

oo~.oe-lo
0.30

0.20

0.10

0.00

1-V(5)
t [sec.]

enainal voltagesT
[volts]

L.oe-lo
l“-V(4)

t [sec.]

o ~. Term. voltages Woks]

“[
0.15 v(2)

0.10

0.05

0.00 I

0.0 0.1 0.2 0.3 0.4

0.50

0.40

0.30

0.20

0.10

0.00

t [nSec. ]

em. voltages Plolts]

v(5)

(

0.0 0.3 0.4
t [*C.]

Figure 4(b): Step response of the three line urdform structure. F@re 5(b): Step response of the nonuniform three-line shucture.
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